scholarly journals “Plug and Play”-expression systems for high-quality production of recombinant proteins for structural analysis

2002 ◽  
Vol 3 (12) ◽  
pp. 33-38 ◽  
Author(s):  
Joop van den Heuvel ◽  
Dirk W. Heinz
2009 ◽  
pp. 135-145 ◽  
Author(s):  
Dusan Skakic ◽  
Igor Dzincic

The quality of products represents one of the key aims of any modern organized production. In the production practice, it is essential to establish the optimal relationship between quality, production economy and delivery deadlines. Furniture quality is evaluated by three levels and they are: basic quality, high quality and especially high quality. The results presented in this paper are based on the sample measurements of chairs and tables during 2007 and 2008 at the Institute for Furniture Quality Control.


2021 ◽  
pp. 153537022110301
Author(s):  
Caio Coutinho de Souza ◽  
Jander Matos Guimarães ◽  
Soraya dos Santos Pereira ◽  
Luis André Morais Mariúba

Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3490
Author(s):  
Krishna P. Khakurel ◽  
Borislav Angelov ◽  
Jakob Andreasson

Crystallography has long been the unrivaled method that can provide the atomistic structural models of macromolecules, using either X-rays or electrons as probes. The methodology has gone through several revolutionary periods, driven by the development of new sources, detectors, and other instrumentation. Novel sources of both X-ray and electrons are constantly emerging. The increase in brightness of these sources, complemented by the advanced detection techniques, has relaxed the traditionally strict need for large, high quality, crystals. Recent reports suggest high-quality diffraction datasets from crystals as small as a few hundreds of nanometers can be routinely obtained. This has resulted in the genesis of a new field of macromolecular nanocrystal crystallography. Here we will make a brief comparative review of this growing field focusing on the use of X-rays and electrons sources.


2012 ◽  
Vol 109 (5) ◽  
pp. 1259-1268 ◽  
Author(s):  
Zihe Liu ◽  
Keith E.J. Tyo ◽  
José L. Martínez ◽  
Dina Petranovic ◽  
Jens Nielsen

2020 ◽  
Vol 11 ◽  
Author(s):  
Elodie Mathieu-Rivet ◽  
Narimane Mati-Baouche ◽  
Marie-Laure Walet-Balieu ◽  
Patrice Lerouge ◽  
Muriel Bardor

The term microalga refers to various unicellular and photosynthetic organisms representing a polyphyletic group. It gathers numerous species, which can be found in cyanobacteria (i.e., Arthrospira) as well as in distinct eukaryotic groups, such as Chlorophytes (i.e., Chlamydomonas or Chlorella) and Heterokonts (i.e., diatoms). This phylogenetic diversity results in an extraordinary variety of metabolic pathways, offering large possibilities for the production of natural compounds like pigments or lipids that can explain the ever-growing interest of industrials for these organisms since the middle of the last century. More recently, several species have received particular attention as biofactories for the production of recombinant proteins. Indeed, microalgae are easy to grow, safe and cheap making them attractive alternatives as heterologous expression systems. In this last scope of applications, the glycosylation capacity of these organisms must be considered as this post-translational modification of proteins impacts their structural and biological features. Although these mechanisms are well known in various Eukaryotes like mammals, plants or insects, only a few studies have been undertaken for the investigation of the protein glycosylation in microalgae. Recently, significant progresses have been made especially regarding protein N-glycosylation, while O-glycosylation remain poorly known. This review aims at summarizing the recent data in order to assess the state-of-the art knowledge in glycosylation processing in microalgae.


Sign in / Sign up

Export Citation Format

Share Document